Improving Online Marketing Experiments with Drifting Multi-armed Bandits

نویسندگان

  • Giuseppe Burtini
  • Jason Loeppky
  • Ramon Lawrence
چکیده

Restless bandits model the exploration vs. exploitation trade-off in a changing (non-stationary) world. Restless bandits have been studied in both the context of continuously-changing (drifting) and change-point (sudden) restlessness. In this work, we study specific classes of drifting restless bandits selected for their relevance to modelling an online website optimization process. The contribution in this work is a simple, feasible weighted least squares technique capable of utilizing contextual arm parameters while considering the parameter space drifting non-stationary within reasonable bounds. We produce a reference implementation, then evaluate and compare its performance in several different true world states, finding experimentally that performance is robust to time drifting factors similar to those seen in many real world cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Armed Bandits for Addressing the Exploration/Exploitation Trade-off in Self Improving Learning Environment

This project proposes the use of machine learning techniques such as Multi-Armed Bandits to implement self-improving learning environments. The goal of a self-improving learning environment is to perform good pedagogical choices while measuring the efficiency of these choices. The modeling of students is done using the LFA model and fitted on a dataset of university courses to allow to simulate...

متن کامل

Generic Exploration and K-armed Voting Bandits

We study a stochastic online learning scheme with partial feedback where the utility of decisions is only observable through an estimation of the environment parameters. We propose a generic pure-exploration algorithm, able to cope with various utility functions from multi-armed bandits settings to dueling bandits. The primary application of this setting is to offer a natural generalization of ...

متن کامل

Reducing Dueling Bandits to Cardinal Bandits

We present algorithms for reducing the Dueling Bandits problem to the conventional (stochastic) Multi-Armed Bandits problem. The Dueling Bandits problem is an online model of learning with ordinal feedback of the form “A is preferred to B” (as opposed to cardinal feedback like “A has value 2.5”), giving it wide applicability in learning from implicit user feedback and revealed and stated prefer...

متن کامل

Exponentiated Gradient LINUCB for Contextual Multi-Armed Bandits

We present Exponentiated Gradient LINUCB, an algorithm for contextual multi-armed bandits. This algorithm uses Exponentiated Gradient to find the optimal exploration of the LINUCB. Within a deliberately designed offline simulation framework we conduct evaluations with real online event log data. The experimental results demonstrate that our algorithm outperforms surveyed algorithms.

متن کامل

A Drifting-Games Analysis for Online Learning and Applications to Boosting

We provide a general mechanism to design online learning algorithms based on a minimax analysis within a drifting-games framework. Different online learning settings (Hedge, multi-armed bandit problems and online convex optimization) are studied by converting into various kinds of drifting games. The original minimax analysis for drifting games is then used and generalized by applying a series ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015